Перевод: с русского на все языки

со всех языков на русский

термин линейного программирования

  • 1 область свободы решений

    Русско-немецкий финансово-экономическому словарь > область свободы решений

  • 2 базисное решение (опорный план)

    1. basic solution

     

    базисное решение (опорный план)
    Термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот отрезок (см. рис. Л.1 к ст. Линейное программирование). Оно является решением системы линейных ограничений, которое нельзя представить в виде линейной комбинации никаких других решений. При решении задачи линейного программирования можно поступить следующим образом: найти любое из таких «вершинных» решений, не обязательно оптимальное, и принять его за исходный пункт расчетов. Такое решение и будет базисным. Если окажется, что оно и оптимальное, расчет на этом закончен, если нет – последовательно проверяют, не будут ли оптимальными соседние вершинные точки. Ту из них, в которой план эффективнее, принимают снова за исходную точку и так, последовательно проверяя на оптимальность аналогичные вер­шины, приходят к искомому оптимуму. На этом принципе строятся так называемый симплексный метод решения задач линейного программирования, а также ряд других способов, объединенных общим названием «методы последовательного улучшения допустимого решения (МПУ)»: метод обратной матрицы или модифицированный симплекс-метод, метод потенциалов для транспортной задачи и др. Они отличаются друг от друга вычислительными особенностями перехода от одного базисного решения к другому, улучшенному.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > базисное решение (опорный план)

  • 3 область свободы решений

    Универсальный русско-немецкий словарь > область свободы решений

  • 4 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 5 дискретное программирование

    1. discrete programming

     

    дискретное программирование
    Раздел оптимального программирования, изучающий экстремальные задачи, в которых на искомые переменные накладывается условие целочисленности, а область допустимых решений конечна. Таким образом, здесь используется модель общей задачи математического программирования с дополнительным ограничением: x1, x2, …, xn — целочисленны. В экономике огромное количество задач носит дискретный характер. Прежде всего это связано с физической неделимостью многих факторов и объектов расчета: например, нельзя построить 2,3 завода или купить 1,5 автомобиля. Все отраслевые задачи строятся в расчете на определенное количество предприятий или проектных вариантов. В планировании распространены типовые размеры предприятий, типовые мощности агрегатов — все это вносит дискретность в расчеты. Наконец, упомянем плановые показатели: годовые, месячные или суточные периоды — это дискретные, раздельные периоды, у каждого из которых есть свое начало и свой конец. Дискретными являются задача о коммивояжере, задача о назначениях, задачи теории расписаний и другие. Для решения задач Д.п. применяется ряд способов. Самый простой — решение обычной задачи линейного программирования с проверкой полученного результата на целочисленность и округлением его до приближенного целочисленного решения. Скажем, получилось из расчета, что надо построить 2,3 завода, выбираются либо два, либо три (что, разумеется, требует дополнительного анализа), точно так же не 1,5 автомобиля, а два или один. Часто в практических задачах искомые переменные принимают только два значения — единицу и нуль. (Их называют задачами булева линейного программирования.) Это означает, что данный вариант решения принимается или отвергается (строить или не строить шахту, приобретать или не приобретать машину и т.п.). Иногда Д.п. называется целочисленным. Как видно из приведенных примеров, это не лишено основания, хотя некоторые математики считают такой термин неправильным (исходя из того, что, строго говоря, дискретное — это не обязательно целочисленное, например, ряд чисел — 1,1 — 1,2 — 1,3… — дискретный, но не целочисленный). Поэтому правильнее, очевидно, считать целочисленное программирование частным случаем дискретного.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дискретное программирование

  • 6 выпуклое программирование

    1. convex programming

     

    выпуклое программирование
    Раздел нелинейного программирования, совокупность методов решения нелинейных экстремальных задач с выпуклыми целевыми функциями (они минимизируются) и выпуклыми системами ограничений. (См. Выпуклость, Вогнутость). Общая задача В.п. состоит в отыскании такого вектора x (т.е. такой точки выпуклого допустимого множества), который доставляет минимум выпуклой функции f(x) или максимум вогнутой функции y(x) (рис. В.4). Для второго случая (выпуклая область допустимых значений и максимум вогнутой функции) ряд авторов предпочитают термин «вогнутое программирование». Выпуклость (вогнутость) важна тем, что гарантирует нахождение оптимального решения задачи, так как соответственно локальные и глобальный экстремумы здесь обязательно совпадают. Критериями оптимальности в первом случае могут быть, например, издержки при различных сочетаниях факторов производства, во втором случае — величина прибыли при этих сочетаниях. Как видим, есть большое сходство между задачами выпуклого (вогнутого) и линейного программирования (последнее можно рассматривать как частный случай первого). Но нелинейность зависимостей делает задачу намного сложнее. Рис.В.4 Задачи вогнутого и выпуклого программирования
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > выпуклое программирование

  • 7 оптимальный план

    1. optimal plan
    2. en optimal design

     

    оптимальный план
    1. Наилучший с точки зрения выбранного критерия вариант развития экономики в целом или отдельного хозяйственного объекта. На уровне народного хозяйства разработку О.п. можно представить себе двояко: с одной стороны, как выбор одного из ряда допустимых вариантов этого плана, с другой — как процесс согласования планов (условно-оптимальных), полученных при решении отдельных моделей, входящих в комплекс моделей народнохозяйственного плана. В последнем случае О.п. определяется как наиболее выгодный для всех организаций, работающих в условиях самоокупаемости и взаимной ответственности. 2. Наилучшее распределение ресурсов в задаче математического программирования (например, линейного программирования); иными словами — решение этой задачи. О.п. (как и всякий план) отображается в экономико-математических моделях вектором (точкой пространства производственных возможностей). Отсюда — распространенный термин «оптимальная точка», что означает О.п. См. также Оптимальное планирование.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    2.7 оптимальный план en optimal design

    План эксперимента, значения уровней факторов которого         fr plan optimal

    определены таким образом, чтобы оптимизировать

    некоторый критерий, обычно какую-то функцию от матрицы

    плана

    Источник: Р 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    2.7 оптимальный план en optimal design

    План эксперимента, значения уровней факторов которого         fr plan optimal

    определены таким образом, чтобы оптимизировать

    некоторый критерий, обычно какую-то функцию от матрицы

    плана

    Источник: 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    Русско-английский словарь нормативно-технической терминологии > оптимальный план

  • 8 анализ производственных отраслей

    1. activity analysis

     

    анализ производственных отраслей
    анализ производственных способов
    анализ деятельности

    В англоязычной литературе этот термин означает научное направление, связанное с использованием линейного программирования в анализе экономических процессов. В его основе лежит предпосылка о постоянстве соотношений затраты/выпуск, он включает в себя методы решения задач технологического выбора, распределения ограниченных ресурсов и проблемы совместного производства разных благ. Основоположник направления Т. Купманс, удостоенный (вместе с Л.В.Канторовичем) Нобелевской премии по экономике.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > анализ производственных отраслей

  • 9 дифференциальные ренты

    1. differential rents

     

    дифференциальные ренты
    Вспомогательные числа, которые прибавляются к элементам исходной матрицы [сij] задачи линейного программирования [1] (например, транспортной задачи) в процессе ее решения по «методу (алгоритму) дифференциальных рент». Не менее чем одна рента должна быть равна нулю. Данный термин нельзя признать удачным вследствие его совпадения с известным термином политической экономии. Однако название «метод Д.р.» утвердилось в специальной литературе. Впрочем, в настоящее время алгоритм Д.р. применяется редко. [1] Обозначения см. в статье Линейное программирование.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > дифференциальные ренты

  • 10 теневые цены

    1. shadow prices

     

    теневые цены
    Промежуточные цены, возникающие в процессе оптимизационных расчетов методом линейного программирования и некоторыми другими экономико-математическими методами. В плановой экономике предлагались в качестве своего рода заменителя рыночных цен, формируемых на основе соотношения спроса и предложения (таковы были объективно обусловленные (оптимальные) оценки Л.В.Канторовича или дифференциальные затраты В.В.Новожилова. Термин Т.ц. употребляется и применительно к рыночной экономике — там, где нет условий для формирования собственно рыночных цен, например, в отраслях здравоохранения или образования, при использовании метода «затраты-выгоды». См. также Множители Лагранжа, Гамильтониан, Предельная норма замещения, Предельная норма трансформации, Предельные издержки.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > теневые цены

  • 11 хроматическое число

    1. chromatic number

     

    хроматическое число
    Число, характеризующее количество несмежных вершин графа. Если пометить все вершины графа р цветами (отсюда и термин“хроматическое”) и при этом никакие две смежные вершины не будут окрашены одинаково, то такой граф называется хроматическим порядка р. Минимальное число р, при котором граф является хроматическим порядка р, называется хроматическим числом данного графа. Оно находится с помощью аналитического метода, основанного на обычных приемах линейного программирования.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > хроматическое число

См. также в других словарях:

  • Базисное решение — (опорный план) [basic solution] – термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот …   Экономико-математический словарь

  • Базисное решение — (опорный план) [basic solution] – термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот …   Экономико-математический словарь

  • базисное решение (опорный план) — Термин линейного программирования, одно из допустимых решений, находящихся в вершинах области допустимых решений, либо, если кривая безразличия параллельна одному из отрезков границы области, то Б. р. – весь этот отрезок (см. рис. Л.1 к ст.… …   Справочник технического переводчика

  • Линейное программирование — Линейное программирование  математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах мерного векторного пространства, задаваемых системами линейных уравнений и неравенств. Линейное программирование… …   Википедия

  • Оптимизация (математика) — У этого термина существуют и другие значения, см. Оптимизация. Оптимизация  в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного …   Википедия

  • Математическое программирование — Математическое программирование  математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями… …   Википедия

  • Методы оптимизации — Математическое программирование  математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями… …   Википедия

  • Программирование математическое — Математическое программирование  математическая дисциплина, изучающая теорию и методы решения задач о нахождении экстремумов функций на множествах конечномерного векторного пространства, определяемых линейными и нелинейными ограничениями… …   Википедия

  • МАТЕМАТИЧЕСКАЯ ЭКОНОМИКА — математическая дисциплина, предметом к рой являются модели экономич. объектов и процессов и методы их исследования. Однако понятия, результаты, методы М. э. удобно и принято излагать в тесной связи с их экономич. происхождением, интерпретацией и… …   Математическая энциклопедия

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

  • Линейное программирование — [linear programming] область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны… …   Экономико-математический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»